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BAYESIAN ANALYSIS OF INSPECTION SAMPLING PROCEDURES

DISCUSSED BY DENINC1

by

Richard E. Barlow and Xiang Zhang
/

1. ABSTRACT

In Chapter 13 of Quality. Productivity. and

Competitive Position. Deming discusses in detail

inspection sampling relative to two different cost

setups. Because of their practical importance, one of

these models was examined in detail from a Bayesian

point of view by Barlow and Zhang (1985 . A very

general Bayesian treatment of these problems is provided

by Lorenzen (1985t. A computer program is also provided

by Lorenzen for the Bernoulli case as well as inspection

sampling plans which reject the lot when the number of

defective items is sufficiently large. However, as we

shall see, simple rules of this form are not optimal for

all of Deming's models. In particular, Deming's

discussion of inspection rules when the finished

assembly cannot be repaired by replacing defective units /

is of this type. Deming describes this model as value 1

added to substrate". For example, if the unit is a bag--- 0
l ~-, ... . ,.--

1Research supported by the U.S. Army Research Office.
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of cement powder, then it cannot be recovered from the

assembly after water has been added.

The purpose of this paper is to analyze and

contrast the two models considered by Deming from a

Bayesian decision analysis point of view. We will

analyze the models using influence diagrams,[Howard and

Natheson (1981). Shachter (1984)3.qThis- is a relatively

new technique for studying statistical problems. It

will be useful for studying inspection sampling

problems.

2. USING INFLUENCE DIAGRAMS

We will explain the use of influence diagrams in

terms of a very simple model. Suppose we are

considering whether or not to inspect units in a unique

lot of size N of such units. That is. there are no

other units than those in this lot. The question is

whether or not to inspect units before installing them

in an assembly. Inspection costs k, dollars per unit.

If a unit is not inspected but is found later to be

defective in the assembly, the cost is k2 dollars.

The decision variables are n . the inspection sample

size. and the inspection decision after all n units

have been inspected. Inspection decision do  is not to

continue inspection. Inspection decision d, is to

inspect the remaining N-n. Figure 2.1 describes the

problem setup.
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Size ASSEMBLY
N TEST

INSPECT? COST = $kl/UNIT

PRODUCTION LINE

I
INSTALL UNIT
IN ASSEMBLY COST = Sk 2 /UNIT IF BAD

k1 < k2

DEMING'S INSPECTION PROBLEM

FIGURE 2.1

L, i
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Figure 2.2 Is an influence diagram related to our

problem. In the diagram, circles denote unknown

quantities while rectangles denote decision nodes. A

double circle denotes a deterministic or logical node.

In the figure. the node corresponding to x 2 - the

number of defectives in the remainder N-n. is

deterministic since

X2 = 9 - x1 given 0 and x,

Arrows indicate logical and statistical dependence.

Associated with. each circle is a conditional probability

distribution. If units in the lot are Judged

exchangeable a priori, then the distribution of x,

given 9. n. and N is hypergeometric. An initial or

prior distribution must be assigned to 0 . the unknown

number of defectives in the lot. Civen n and x2  the

total cost is ksn + k2x 2  if the decision is do . If

the decision is d, . the total cost is kjN •

-C-

O o arlow and Zhang (19B5)-br a me&W i" 4 ek

A mathematically convenient distribution model for

the initial distribution of 0 is the Beta-Binomial. 0

is Beta-Binomial if 0 given p is Binomial(p.N) and

p is Beta(A.B) where

Beta(A.B) z pA-l(1-p)B-1

V_" • , . ' ' - p " -
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and A.B > 0 In this case [cf. Basu and Pereira

(1982)]

E[G-x1 1x1 n.NJ = (N-n)(A+x1 )/[A+B+nJ

and the decision rule d, is optimal if

(A+xl)/[A+B+nJ k jk

Since the left hand side io Increasing in x, and

decreasing In n ( N . we have that n=N is optimal If

and only if

A/[A.B+N-lJ k ,k

Unfortunately the Beta-Binomial is not an

appropriate prior distribuztion If we strongly believe a

priori that 0 Is approximately 0 0(0 < 0 0( N) so

that the coefficient of variation

1/2
0(0)/P(G) < t(l-80 /N)/0J

For the Beta-Binomial

a(G) [JNA/(A+B)][1-A/(A+B)J[(A+B+N)/(A+B+l)J

and ui(0) =NA/(A+B) 0 0~ so that the coefficient of

variation satisfies

(1- 0 N)(A+B+N)
or(O)s(0) 1(~ 0d) (A+B+l)

> J(1- 0 /N)/0

In this case d 0  may be best if x, is sufficiently

large so that the decision rule Is reversed from the
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Beta-Binomial case.

In the appendix the solution strategy for the

problem with arbitrary prior is described in terms of

arc reversals and node eliminations. To determine the

sample size. n .

Minimize I Min(kln + k2 E(x 2 :xl.n,N), kN) p(xl:n.N)
n x I

Knowing the decision rule (as in the Beta-Binomial case)

simplifies the computation by allowing the first minimum

computation before the summation.

3. DEMING'S INSPECTION SAMPLING MODELS

Units from a lot of size N are installed in an

assembly at a point in the production line. The

question is whether or not to inspect the unit (at cost

Skl/unit) before installing the unit in an assembly. If

the unit is not inspected but is defective, then this

will be discovered at assembly test. A cost $k 2 > $kj

will then be incurred. In model 1. the defective unit

found at assembly test will be replaced by a good unit.

In model 2. this is not possible and the assembly will

be sold at a reduced price. In this case k2  is the

loss incurred. In Deming's models all lots are judged

exchangeable a priori so that a binomial(p.n)

probability function is used for the number of defective

units in the lot. The unknown percent defective is

denoted by p.

I.*
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In both models we consider inspecting n N units.

Let x, be the number defective in the sample of size

n. Since known defective units will not be Installed.

an additional yi units are inspected until good units

are found and installed. Since the vendor will replace

defective units at the vendor's cost we may consider the

yi units that are inspected to come from a separate and

very large lot provided by the vendor. The sampling

inspection cost is kl[n+y].

After inspecting n units we consider only two

possible decisions for both models, namely

d : STOP inspecting units

d : INSPECT the remaining N-n

In model 1. the x2  defective units found in the

remaining N-n units at assembly test are replaced by

good units. To do this an additional Y 2 units need to

be inspected to find good units. The y2  units

inspected also come from the separate lot provided by

the vendor. The cost of defective units found at

assembly test is

k2X2 + kjY2

The logical and statistical dependency between the

unknown quantities and decisions are shown in Figure

3.1. The random quantity, p , is the unknown percent

defective in many lots, all Judged exchangeable.

Iw
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Figure 3.1 makes explicit the well known fact that

x1 and x2  given n and p are statistically

independent. Table 3.1 describes the variables used in

Figure 3.1.

-A 1

_.4

-t
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TABLE 3.1

MODEL 1

UNKNOWN QUANTITIES DESCRIPTION CONDITIONAL
PROB.
DISTRIBUTIONS

p Percent defective vr(p)
In many lots

X1 defective in p(xln.p)
sample size n

YU additional p(ylX 1 .p)

(y, xi) Inspections rqd.

X2 defectives in P(X2 !N-n.p)
N-n

Y2 # additional P(Y 2 lX2.P)
(Y2 X2) Inspections rqd.

DECISION DESCRIPTION
VARIBLES

n Sample Size

d0 (x1 .n) Decision to STOP Inspection given

dl(xln) Decision to INSPECT remaining N-n

given (xln)I
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Model 1 was examined in detail in Barlow and Zhang

(1985). Let Z, be an indicator for the i-th unit

which is I if the unit is defective and 0 otherwise.

Given n and x, , d, is optimal if

E[E(Z 1 1p):x1 ,n] k1 /k2  The assumption made was that

only x, and n were known at the time of the

inspection decision. Since y, . the additional

inspections required is also presumably known, there is

a loss of information. If both n and y, are known

at the time of the inspection decision then the critical

number. c(n) , may exceed n in this case. Other

than this. all the results in Barlow and Zhang (1985)

carry over to the case that y, is known at the time of

the inspection decision.

4. DEMING'S MODEL FOR VALUE ADDED TO SUBSTRATE

Work is done on incoming material, the substrate.

The finished product will be classed as first grade or

second grade or third grade or scrap. Let k2 be the

average loss from downgrading the final product or for

scraping finished items.

If the incoming unit is non-defective, then it will

result in a final product of first grade; otherwise, If

it is defective, and if it goes into the production

line, then a final product of downgrade or scrap will be

produced. Every final product is subject to assembly
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grading. Figure 4.1 is an influence diagram

representation of our problem. In this case there is an

arrow from inspection decision to Y2 since Y2 = 0 if

decision d is taken.0

The optimal inspection decision rule can be

calculated for every sample size n in terms of the costs

kj, k 2 and the prior distribution for p.

Lemma 1. Suppose n units are inspected and x, are

found defective. The optimal inspection decision rule

in this case is d, if

E[Var(Zslp) : xl.n-1] kj/k2

where expectation is with respect to the posterior

distribution of p given x, and n-1

Since p(l-p) 1/4 for all 0 p 1 . it

follows from Lemma 1 that if kj/k 2 > 1/4 . then d0  is

optimal for all possible 0 x, j n N ; i.e. n = 0

is optimal in this case.

For a Beta(A.B) prior and given x, and n .d

is optimal if

(A~xs)(B~n-l-x)/[(A B+n)(A B+n-1)] k k/k2

Hence. given x, and n . d, Is optimal if

x, a [cl(n) . c2(n)]

where cl(n) and ca(n) are given by

cl(n) -b - 1b - 4ac)

2aL
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c2(n) =fb + 17b- 4ac)l
L 2a-

where a = 1. b = -(B+n-l-A).

c = -A(B+n-1) + (A+Bn)(A+B+n-l)kl/k2

The intuitive reason for this rule is as follows.

If the expected variance is small, then we expect that

p is either close to zero or close to one. If we

believe p is close to 0 so that there will be few

defectives, then there is no point to inspection. On

the other hand. if we believe p is close to one. then

there will be so many defective units that the cost of

inspecting units to find a good unit to replace a

defective unit before assembly will tend to exceed the

cost due to downgrading the final assembly even if it is

defective.

This decision rule is in contrast to the decision

rule for Model I where we inspect all units if the

posterior expected probability that a unit is defective

is sufficiently large.

Proof of Lemma 1. Suppose we inspect n units and x,

are found defective. The expected cost given n and

x 1  if we take decision d is0
1

c(do) 0 (N-n) r k 2PT(PxI.n) dp
0

If decision d, is taken, then the expected cost is

1 -1
C(d 1 ) - (N-n) J1 k1 (1-p) w(plxs.n) dp

0
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Consider the difference

C(d 0) C(d1 ) =(N-n)k2 .f [p -k 1/k2(1-p)' Jw(pxl.n) dp
0

=(N-n)k2 J*(1-p) [p(I-p) - kl/k 2 Jr(P:Xl.n) dp
0

Since w(pxln) is proportional to p~ i(_Pp)nlxi,(P)

C(d 0  < C(d1 ) iff f[p(I-p) - kl/k 2JP'X (l-P)n x (p) dp < 0
0

1
1ff f p(I-p)T(p:xln-1) dp ( kj/k 2

0

1
iff f Var(Z1Ip)v(px1,n-1) dp < kj/k 2

0

1ff E[Var(Z1 Ip):xl.n-1J < kj/k 2 .QED

Lemma 2.. E[Var(Zlp):xl.n-1J io unimodal in x, (n)

when ni (xj) Is fixed.

1
Proof. E[Var(Zlp):x 1 n-1J f p(1-p)v(pxj1 n-I) dp

0

Note that v(pxj.n-1) can be written as

g(xl.n)(1-p)pxl (lp)n-xi . It is well known that

p xl( 1 _P)n-lX is a totally positive function of x, and

p and reverse regular function of n and p [Karlin

Theorem 2.1. page 18 (1968)]. It follows that
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w(p:xl.n-1) is totally positive in x, and p and

reverse regular in n and p since g(x1 ,n) ) 0

Using the sign variation diminishing properties of

sign-regular functions [Section 3, Chapter 5, Karlin

(1968)] we can finish the proof. To do this consider

1
h(x 1 .n) - a = I [p(l-p) - a]w(p~xj.n-l) dp

0
01 

2
- I [-p +p-a]w(p:x,.n-l) dp~0

for a fixed real a . The quadratic function can have

at most two sign changes in [0.1] The sign must

change from negative to positive to negative If there

are exactly two sign changes. It follows that

h(xl*n) - a as a function of x, (n) when n (x1 ) is

fixed, changes sign at most two times when x, (n) runs

from 0 (xi) to n (N) . Furthermore h(xln) as a

function of x, changes sign in the same order if there

are two sign changes. As a function of n it changes

sign in the opposite order if there are two sign

changes. Since a is an arbitrary real number, this

implies the unimodality properties as stated. QED

The figures below illustrate h(xl.n) as a

function of x, for fixed n and also as a function of

n for fixed x,
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k2 I nfie

cl (n) c2(n) X

~h (x1 ,n)

gxj is fixed

I1 N
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Theorem. For Model 2 and given n and x, the optimal

inspection decision is d, if and only if

xP [c1(n). C2(n).

where cl(n) and c2 (n) are solutions to
1

.F p(l-p)#(p:cn-1) dp = 0
0

This is true for any prior distribution for p.

The proof is an immediate consequence of Lemmas 1

and 2.

5. CONCLUSIONS

Influence diagrams are a useful technique for

displaying the logical and statistical dependence

between unknown quantities and decision variables in

inspection sampling problems. They can also be used to

develop a computational solution strategy. The solution

strategy is simplified if the form of the optimal

inspection decision rule can be calculated. However.

the "obvious" inspection rule of inspecting all

remainders in a lot when the number of defectives in a

sample is sufficiently large is not always correct.

This has been shown for two cases; namely the case of a

unique lot when we have a strong prior for 0 (i.e. the

prior coefficient of variation is sufficiently small)

and for the Deming Model 2 corresponding to "value added

to substrate."
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